![]() Apparatus and method of capturing images from alternative media types
专利摘要:
A method and apparatus to permit digital capture of images from both transmissive and reflective media. A laser or other source of excitation radiation is coupled to a mounting surface to be in optical communication with a reading window when installed on a scanner. A rear casing is coupled to the monitoring surface to engage a housing of a scanner, the housing defining the reading window. 公开号:US20010002151A1 申请号:US09/747,616 申请日:2000-12-20 公开日:2001-05-31 发明作者:Stephen Neushul 申请人:Stephen Neushul; IPC主号:G02B27-023
专利说明:
[0001] (1) Field of the Invention [0001] [0002] The invention relates to digital capture of x-ray images. More specifically, the invention relates to capturing of x-ray images from both transmissive film and reflective filmless plates. [0002] [0003] (2) Background [0003] [0004] Various scanners for digitizing images from x-ray film are commercially available. For example, Radiographic Digital Imaging of Compton, Calif. produces a lightbox scanner sold under the trademark COBRASCAN® which uses a charge coupled device (CCD) to capture the image contained on a standard x-ray film when the x-ray film is transported past a reading window. [0004] [0005] While traditional x-ray film has been ubiquitous for decades, more recently, filmless x-rays have been taken using a phosphorescent plate. The phosphorescent plate is reflective and erasable, allowing for repeated reuse. An x-ray impregnates the plate with energy which, when subsequently exposed to a particular excitation, is released, recreating the image. Various companies produce readers for these filmless plates, including Fuji Film Ltd. and Eastman Kodak. Such readers typically employ a flying spot laser and photo multiplier tube. The photo multiplier tube captures the image corresponding to the energy being released by excitation of the flying spot laser. The plate is typically transported by a set of rollers which necessitate that the phosphorescent plate be flexible and, in any case, over time, causes a deleterious effect on the plate, resulting in limited reusability. Additionally, these readers are incapable of digitizing conventional x-ray film. Thus, a radiology department is required to have two separate devices for the digitization of images from the different media types. [0005] BRIEF SUMMARY OF THE INVENTION [0006] A method and apparatus to permit digital capture of images from both transmissive and reflective media is disclosed. A laser or other source of excitation radiation is coupled to a mounting surface to be in optical communication with a reading window when installed on a scanner. A rear casing is coupled to the mounting surface to engage a housing of a scanner, the housing defining the reading window. [0006] BRIEF DESCRIPTION OF THE DRAWINGS [0007] FIG. 1 is a diagram of the image capture device of one embodiment of the invention. [0007] [0008] FIG. 2 is a diagram of the image capture system of FIG. 1 transporting a medium. [0008] [0009] FIG. 3 is a cross-sectional view of a scanning system of one embodiment of the invention. [0009] [0010] FIG. 4 is a cutaway view showing the digital back of one embodiment of the invention. [0010] [0011] FIG. 5 is a sectional view showing an image capture camera which captures an image reflected by a mirror from a reading window. [0011] [0012] FIG. 6 is a top plan cross-sectional view of a system of one embodiment of the invention. [0012] [0013] FIGS. 7 and 8 show a filmless x-ray cassette which may be used with one embodiment of the invention. [0013] DETAILED DESCRIPTION [0014] FIG. 1 is a diagram of the image capture device of one embodiment of the invention. Lightbox and dual scanner unit [0014] 10 includes a housing 12 that defines a translucent viewing surface 14 and a reading window (not shown). The unit 10 is mounted vertically such that reading of media occurs in a vertical plane. This vertical mounting also reduces the likelihood of dust contamination on the internal optics of the unit 10. In one embodiment, the viewing surface is illuminated from within by a pair of fluorescent tubes mounted within the housing 12. In an alternative embodiment, camera 30 is replaced with a photo multiplier tube (PMT). In such embodiment, an optical wave guide may be used between the PMT and the reading window. ISAs and PMT are generically referred to as “sensors” herein. A digital camera 30 which includes an image sensing array (ISA), such as a charge coupled device (CCD) or a complementary metal oxide semi-conductor (CMOS) device is disposed within the housing 12. A digital back 16 contains a laser 40 that is described in further detail below. Switch 22 may be a multi-positional switch which selects a mode of operation, including lightbox only, transmissive scan, or reflective scan. Alternatively, switch 22 may merely turn the power to the system on, while mode selection is software driven or provided by another switch, button or keypad. [0015] A bar clip [0015] 18 is used to hold a medium to be scanned. In this instance, the medium may be a transmissive traditional x-ray film, or a reflective phosphorescent plate. It is desirable that the bar clip be offset from viewing window 14 such that media hanging in the bar clip is not in surface contact with the window. This avoids frictional degradation of the film or plate. Lightcover 20 covers a vertically mounted fluorescent tube which provides the backlight source for scanning transmissive media. This backlight source is disposed a displacement from the reading window (not shown) such that when a transmissive medium is transported by the transport mechanism past the reading window, the light source shines through the transmissive media permitting the sensor to scan the image line by line. The transport mechanism in one embodiment of the invention includes a stepper motor and a rack-and-pinion drive which drives at the bar clip during scanning. [0016] FIG. 2 is a diagram of the image capture system of FIG. 1 transporting a medium. The media [0016] 50 is retained in bar clip 18 and transported under the scanning light source past the reading window. In the shown embodiment during scanning, the bar clip will transport the media from left to right between the reading window and the backlighting source and then return the media to be disposed over the viewing surface 14. [0017] FIG. 3 is a cross-sectional view of a scanning system of one embodiment of the invention. The backlight [0017] 21 for reading of transmissive media is revealed in this cross-sectional view. Backlight 21 is mounted vertically under lightcover 20 a displacement from reading window 34 which permits the transport mechanism 18 to transport media 50 between the reading window 34 and the light 21. Reading mirror 32 and the laser redirection mirror 48 are also shown. [0018] FIG. 4 is a cutaway view showing the digital back of one embodiment of the invention. A mounting surface [0018] 42 is coupled to a rear casing 52. A laser 40 is mounted on the mounting surface 42. The mounting surface 42 defines a optically transmissive window 58 which permits the laser 40 to be in optical communication with a reading window. A mirror 48 is mounted on the mounting surface 42 and reflects the laser light incident thereon through the optically transmissive window 58 and on through the reading window (not shown). [0019] Because of the energy density required to excite typical existing phosphorescent plates to release the image stored thereon, the number of options for laser [0019] 40 are possible. One option is to have the laser be a twenty watt laser. With a twenty watt laser, using a simple mask, a line of laser light can be created and reflected by mirror 48 to excite the plate directly. In one embodiment, the line created has a width of fifty microns. Embodiments using a twenty watt laser tend to be quite expensive. Alternatively, a scan pattern may be created by a scan pattern creator 46. The scan pattern should be created at a speed much faster than the response time of the ISA such that the ISA “sees” the scan pattern as a unit. In such embodiment, laser 40 may be a continuous spot laser and the scan pattern creator 46 may be a piezo electric mirror or a rotating prism driven by motor 44. In this manner of relatively low wattage, continuous spot lasers can be used to create a line by rotating the mirror or prism back and forth rapidly at a rate higher than the response rate of the ISA, thereby exciting a continuous line on the phosphorescent plate and allowing line-by-line capture of the image by the ISA. [0020] For example, laser [0020] 40 may be a diode laser at a 680 nm wavelength with a spot size of fifty microns. The pattern generated for excitation of lines of a typical phosphorescent plate is a fourteen inch line with a power density of ten mW/spot. This then dictates the wattage of the laser and the rate of rotation of the scan pattern generator. In some embodiments, such as those using PMT, laser 40 may be a flying spot laser. [0021] FIG. 5 is a sectional view showing image capture camera [0021] 30 which captures an image reflected by reading mirror 32 from reading window 34. A pair of horizontally mounted fluorescent tubes 31 illuminates viewing surface 14 from within the housing 12. As previously noted, all of these components are mounted within housing 12. The reading mirror 34 ensures optical communication between the camera 30 and any media passing over a reading window. [0022] FIG. 6 is a top plan cross-sectional view of a system of one embodiment of the invention. Digital back [0022] 16 couples to housing 12 to form an enclosure that prevents contaminants from entering. In one embodiment, the digital back is desired to provide an easy retrofit for existing COBRASCAN® scanners. [0023] The laser [0023] 40 focuses its beam on scan pattern creator 46 which directs the pattern created, which in one embodiment is a line, onto mirror 48. Mirror 48 is at an angle to the pattern creator 46 such that the created line of laser light is directed by mirror 48 at an angle past reading mirror 32 through reading window 34. Reading mirror 32 is positioned at a 45° degree angle to both camera 30 and reading window 34 such that it reflects a line of the image just beyond the exposure to laser light. In this manner, if the medium transported is a phosphorescent plate, released energy signature corresponding to an image is stored by the camera 30. If the medium is an x-ray film or other transmissive medium, it is backlit by the light source in light source cover 20 and that image is captured by camera 30. Notably, if the medium is transmissive, the line of laser light will pass through and the coefficient of reflection is such that it will not be reflected to the mirror 32 and captured by the camera 30. Accordingly, operating the laser while scanning transmissive media results in no significant degradation of the images captured. Thus, in one embodiment of the invention, media images are simultaneously backlit and exposed to laser light. In such cases, the system need not know what mode it is operating in. The sensor merely captures the image reflected by reading mirror 32 without regard to whether the media is transmissive or reflective. [0024] FIGS. 7 and 8 show a filmless x-ray cassette which may be used with one embodiment of the invention. The cassette includes a casing [0024] 100 having a cover 102 which slidably engages the casing 100 and is held by a pair of continuous springs 104 such that it is exposed when the cover is open. The cover is provided with a lip 106. When the cassette is held by the bar clip of one embodiment of the invention, the lip 106 hooks over the left end of the housing. Then as the cassette is transported in front of the viewing window, the cover slides off by virtue of the action of the transport mechanism and having the lip hooked on the left edge of the housing, thereby exposing the phosphorescent plate 150 inside. As the transport mechanism returns to its pre-scan position, the continuous springs pull the cover into a retracted position. In this manner, the contact with the phosphorescent plate is minimized such that the useful life is vastly increased. [0025] In one embodiment, the light source for the viewing surface is selected to have a wavelength that causes the plate to be erased. In such an embodiment, if the continuous springs are omitted, the plate will be scanned and erased in a single cycle. In such an embodiment, the cassette is opened by the action of the transport mechanism but requires manual closing after erasure in the return position. Notably, no contact with the plate is required even in this embodiment. [0025] [0026] In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes can be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. Therefore, the scope of the invention should be limited only by the appended claims. [0026]
权利要求:
Claims (16) [1" id="US-20010002151-A1-CLM-00001] 1. A method comprising: selecting between a transmissive scan mode (TSM) and a reflective scan mode (RSM); backlighting a transmissive medium if TSM is selected; and generating a scan pattern if RSM is selected. [2" id="US-20010002151-A1-CLM-00002] 2. The method of claim 1 wherein generating comprises: activating a laser to produce a laser beam of a first energy density; interposing optics between the laser and a reflective media to create a light line of a second energy density, wherein the second energy density is sufficient to excite a phosphorescent plate. [3" id="US-20010002151-A1-CLM-00003] 3. The method of claim 2 further comprising: capturing an image represented by an energy release of the phosphorescent plate in an image sensing array. [4" id="US-20010002151-A1-CLM-00004] 4. The method of claim 3 further comprising: storing a digital representation of the image. [5" id="US-20010002151-A1-CLM-00005] 5. The method of claim 3 further comprising: automatically erasing the phosphorescent plate once the capturing is complete. [6" id="US-20010002151-A1-CLM-00006] 6. A method comprising: simultaneously backlighting a medium and exposing the medium to an excitation radiation; capturing an image generated by a release of energy responsive to the excitation radiation if the medium is reflective; and capturing an image exposed by the backlighting if the medium is transmissive. [7" id="US-20010002151-A1-CLM-00007] 7. The method of claim 6 wherein exposing comprises: powering a laser; generating a linear scan pattern; and reflecting the scan pattern through a reading window onto the medium. [8" id="US-20010002151-A1-CLM-00008] 8. The method of claim 6 wherein the reflecting causes the scan pattern to excite a reflective media along a line, a plane through which and intersecting a middle line of the reading mirror, defines an angle greater than 45° with a surface plane of the reading mirror. [9" id="US-20010002151-A1-CLM-00009] 9. The method of claim 6 further comprising: exposing the medium to radiation suitable to erase a phosphorescent photo after the capturing. [10" id="US-20010002151-A1-CLM-00010] 10. A digital back for a scanner having an image sensing array within a housing defining a reading window, the digital back comprising: a rear casing; a mounting surface coupled to the rear casing; a laser mounted on the mounting surface; and a mirror in optical communication with the laser to reflect a laser light into optical communication with the reading window. [11" id="US-20010002151-A1-CLM-00011] 11. The digital back of claim 10 further comprising: a rotatable prism disposed between the laser and the mirror; and a motor to rotate the prism when operating to produce a line of laser light. [12" id="US-20010002151-A1-CLM-00012] 12. The digital back of claim 10 wherein the rear casing is to engage to housing of the scanner to form a seal to prevent contaminants from entering the housing. [13" id="US-20010002151-A1-CLM-00013] 13. The digital back of claim 10 wherein the laser emits light at approximately 680 nm. [14" id="US-20010002151-A1-CLM-00014] 14. The digital back of claim 10 wherein the laser is a diode laser. [15" id="US-20010002151-A1-CLM-00015] 15. The digital back of claim 10 further comprising: a piezoelectric mirror coupled to in an optical path between the laser and the reading window. [16" id="US-20010002151-A1-CLM-00016] 16. The digital back of claim 10 wherein the laser is a continuous spot laser.
类似技术:
公开号 | 公开日 | 专利标题 US7808688B2|2010-10-05|Apparatus and method of capturing images from alternative media types KR101726716B1|2017-04-13|Combination computed and direct radiography system and method JP2002131670A|2002-05-09|Optical scanner US7061002B2|2006-06-13|Radiation image read-out apparatus US7477434B2|2009-01-13|Process and apparatus for retrieving information projected image-wise on a photo-stimulable phosphor imaging substrate utilizing a non-orthogonal pentaprism JP2004279593A|2004-10-07|Radiographic image information reader JPH06100789B2|1994-12-12|Radiation image information reader JPH06308299A|1994-11-04|Radiation photographing cassette and radiation image reader JP2565702B2|1996-12-18|Radiation image information recording / reading device JP3283168B2|2002-05-20|Recording operation control device for electro-developing camera JP3515670B2|2004-04-05|Electro-developing recording medium for use in an electro-developing camera and image reading apparatus for reading the recorded image JP2001083641A|2001-03-30|Radiograph reading device JP2002148741A|2002-05-22|Radiation image information reader JP3559353B2|2004-09-02|Electro-developing imaging device JP3450560B2|2003-09-29|Image input device JPH0786660B2|1995-09-20|Radiation image information reader JP2596845B2|1997-04-02|Cassette for stimulable phosphor sheet and stimulable phosphor sheet supply and storage mechanism JP2003101730A|2003-04-04|Image-forming apparatus JP3678826B2|2005-08-03|Image reading device JP2873834B2|1999-03-24|Radiation image information recording and reading device JPH065359B2|1994-01-19|Radiation image information reader JPH05110783A|1993-04-30|Picture reader JPH065358B2|1994-01-19|Radiation image information reader JP2003015240A|2003-01-15|Method and device for reading radiographic picture information JPH0690418B2|1994-11-14|Radiation image information reading and reproducing device
同族专利:
公开号 | 公开日 US7808688B2|2010-10-05| US20080245973A1|2008-10-09| WO2001039492A2|2001-05-31| EP1236346A2|2002-09-04| WO2001039492A3|2001-12-13| US6188501B1|2001-02-13| US20030169471A1|2003-09-11| AU3266801A|2001-06-04| US6532092B2|2003-03-11|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20060045149A1|2004-08-27|2006-03-02|Pentax Corporation|Laser scanning device|US1431271A|1921-04-12|1922-10-10|Harvey W Van Allen|Radiosensitive element| US3694653A|1971-11-04|1972-09-26|Sana Products Inc|X-ray film cassette holder| US3896576A|1973-08-01|1975-07-29|Leo H Wolf|Dental x-ray film and chart viewing apparatus| NL8401605A|1984-05-18|1985-12-16|Optische Ind De Oude Delft Nv|LIGHT BOX FOR GIVING A BACKGROUND LIGHT WITH BRIGHTNESS VALUES ADAPTED TO THE BLACK OF A LIGHT BOX FOR VIEWING.| US4628356A|1984-10-15|1986-12-09|Imagex, Inc.|Digital X-ray scanner| US4810874A|1985-12-27|1989-03-07|Fuji Photo Film Co., Ltd.|Radiation image read-out apparatus and cassette used for the same| US4870285A|1987-04-16|1989-09-26|Fuji Photo Film Co., Ltd.|Cassette for information recording mediums| JP2809627B2|1987-07-22|1998-10-15|株式会社東芝|Image reading device| JPH0687120B2|1987-09-18|1994-11-02|富士写真フイルム株式会社|Radiation image information reader| JPH01101063A|1987-10-14|1989-04-19|Toshiba Corp|Picture information reader| US4827136A|1987-11-27|1989-05-02|Bishop Jr Gerald L|Cassette having photostimulable luminescent substrate| US4908876A|1988-03-16|1990-03-13|Digivision, Inc.|Apparatus and method for enhancement of image viewing by modulated illumination of a transparency| JPH0216863A|1988-07-05|1990-01-19|Minolta Camera Co Ltd|Reading device| JP2546708B2|1988-09-14|1996-10-23|富士写真フイルム株式会社|Light beam scanning device| FR2645286B1|1989-03-29|1992-01-03|Gen Electric Cgr|LIGHT RADIOGRAPHY TABLE| US5068909A|1989-05-18|1991-11-26|Applied Imaging Corporation|Method and apparatus for generating quantifiable video displays| US4996785A|1989-09-21|1991-03-05|Picker International, Inc.|Hanger for flat film media| US5241406A|1990-01-18|1993-08-31|X-Ray Scanner Corporation|X-ray film scanning and digitizing apparatus| US5441251A|1991-04-19|1995-08-15|Fuji Photo Film Co., Ltd.|Sheet article containing cassette and system| US5251072A|1991-05-28|1993-10-05|Shinko Electric Co., Ltd.|Image reader| US5379997A|1992-03-31|1995-01-10|Fuji Photo Film Co., Ltd.|Cassette| US5308994A|1992-04-17|1994-05-03|Fuji Photo Film Co., Ltd.|Cassette setting device| DE69311433T2|1992-04-21|1998-01-02|Agfa Gevaert Nv|Scanning device for PSL radiography cassette| US5384862A|1992-05-29|1995-01-24|Cimpiter Corporation|Radiographic image evaluation apparatus and method| US5321520A|1992-07-20|1994-06-14|Automated Medical Access Corporation|Automated high definition/resolution image storage, retrieval and transmission system| US5330309A|1992-11-25|1994-07-19|Eastman Kodak Company|Reader having cassette locating and unlatching mechanism| EP0598949B1|1992-11-25|1996-09-18|Agfa-Gevaert N.V.|Radiation image read-out method| US5592374A|1993-07-02|1997-01-07|Eastman Kodak Company|Patient identification and x-ray exam data collection bar code system| DE9400385U1|1994-01-12|1994-05-11|Just Gmbh & Co Buerokommunikat|SCSI transparency scanner| US5440146A|1994-03-31|1995-08-08|Minnesota Mining And Manufacturing Company|Radiographic image reader| US5574274A|1995-02-21|1996-11-12|Microtek International, Inc.|Transmissive/reflective optical scanning apparatus| TW336004U|1997-03-26|1998-07-01|Mustek Systems Inc|Improvement on a scanner| US5861631A|1997-05-23|1999-01-19|Eastman Kodak Company|Storage phosphor cassette with improved durability| US6191426B1|1997-11-10|2001-02-20|Konica Corporation|Cassette| US7057188B2|2002-09-13|2006-06-06|Agfa-Gevaert|X-ray cassette for computed radiography and method for use thereof|US7375350B2|1999-11-24|2008-05-20|Neushul Stephen|Computed radiography x-ray cassette with rigid embedded CR plate| US6373556B1|1999-12-10|2002-04-16|Michel Gervais|X-ray transparency scanner| DE10061576A1|2000-12-11|2002-06-27|Agfa Gevaert Ag|Storage layer and conversion layer and device for reading out X-ray information and X-ray cassette| TWI285497B|2002-03-18|2007-08-11|Transpacific Optics Llc|Light source color modulation device and method| WO2004057371A2|2002-12-20|2004-07-08|Agfa-Gevaert Ag|Wall-mountable scanning device for capturing image information| AU2003300246A1|2002-12-20|2004-07-14|Agfa-Gevaert Ag|Device for reading-out image information| US7185206B2|2003-05-01|2007-02-27|Goldstein Neil M|Methods for transmitting digitized images| US7948665B2|2004-10-06|2011-05-24|CSSN, Inc|Uniform illumination for camera based scanning devices| US7612570B2|2006-08-30|2009-11-03|Ricoh Company, Limited|Surface-potential distribution measuring apparatus, image carrier, and image forming apparatus| US8164803B2|2009-03-16|2012-04-24|Xerox Corporation|Infrared heat source tied to image scanner for transitional document erasing| US9541998B2|2015-01-29|2017-01-10|Samsung Electronics Co., Ltd.|Electronic system with gaze alignment mechanism and method of operation thereof| CN105158909A|2015-10-16|2015-12-16|叶淑兰|Medical slice-reading device with position detecting device| CN105954879B|2016-06-16|2018-05-08|薛怀民|Image intelligent operation sees sheet devices| TWM588280U|2019-06-04|2019-12-21|麗寶大數據股份有限公司|Display device with lock cover structure| CN110727118A|2019-10-22|2020-01-24|中国人民解放军第四军医大学|Orthopedics doctor who conveniently adjusts sees piece device| CN110780450B|2019-12-05|2021-07-06|青岛市中心医院|Piece device is seen in tumour radiotherapy|
法律状态:
2003-02-20| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2006-09-11| FPAY| Fee payment|Year of fee payment: 4 | 2010-09-13| FPAY| Fee payment|Year of fee payment: 8 | 2014-09-11| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US09/450,031|US6188501B1|1999-11-24|1999-11-24|Apparatus and method of capturing images from alternative media types| US09/747,616|US6532092B2|1999-11-24|2000-12-20|Apparatus and method of capturing images from alternative media types|US09/747,616| US6532092B2|1999-11-24|2000-12-20|Apparatus and method of capturing images from alternative media types| US10/386,326| US7808688B2|1999-11-24|2003-03-10|Apparatus and method of capturing images from alternative media types| US10/714,087| US7375350B2|1999-11-24|2003-11-13|Computed radiography x-ray cassette with rigid embedded CR plate| US11/681,772| US7507974B1|1999-11-24|2007-03-03|Glass cassette for scanning imaging plates| US12/118,310| US20080245973A1|1999-11-24|2008-05-09|Computed radiography x-ray cassette with rigid embedded cr plate| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|